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Abstract: The ant trail pheromone (+)-Monomorine was synthesized in 9 steps from 
N-t-BOC-L-alanine ethyl ester. The key step of the synthesis is the conformationally 
restricted Claisen rearrangement of lactone 9 to pipecolic ester 11. 

The indolizidine alkaloids display a wide range of biological activity’ and have been the 

subject of a considerable number of synthetic studies. 2 The development of general methods for 

the synthesis of enantiopure indolizidines remains a challenge for the synthetic chemist.2 We 

have recently developed an enantioselective synthesis of highly functionalized pipecolic esters3 

that might find application as part of a general synthetic route to enantiopure indolizidine 

alkaloids from readily available a-amino acids. s We report here the implementation of this 

strategy with the total synthesis of the Pharaoh ant trail pheromone (+)-monomorine.4bes 
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We have shown that esters of amino acids 2 could be converted to N-methyl pipecolic 

esters 4a in good yields (Scheme 1) .sa The key step of the synthetic sequence was a 

conformationally restricted Claisen rearrangement of ketene acetals derived from lactones 3~1.7 

The extension of this methodology to the synthesis of indolizidines required the preparation of 

pipecolic esters with a protecting group on nitrogen that could easily be removed. Since the 

proposed route required a hydrogenation, N-benzyl pipecolic esters 4b were logical 

intermediates in the proposed indolizidine synthesis. The benzyl protecting group might allow 

the deprotection to be accomplished as one of several reductions in the penultimate step of the 

synthesis. 
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Scheme 1. Synthesis of Plpecolic Esters from Amino Esters. 
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We have previously descrfbedaa the synthesis of ally1 alcohol 6 from readily available 

BOC-alanine ethyl ester 5 via Yamamoto’s one pot reduction-alkylation procedure* in 59% yield 

(8:l mixture of diastereomers). The mixture of diastereomers was carried forward without 

separation. Removal of the BOC protecting group was accomplished with triflouroacetic acid (10 

equiv, CH&l2,0 ‘C, 90 min) to afford amino alcohol 7.9 Amine 7 was then protected by acylation 

with benzoyl chloride (2.2 equiv, pytidine, 5h, 25 “C), followed by reduction of the amidoester 

with LiAlH4 (5 equiv, THF, reflux, 1 h) to afford N-benzyl amine 8 in 80% overall yield from 7. 

Formation of lactone 9 was accomplished in 84 % yield by treatment of 8 with a- 

bromophenylacetate (1 .l equiv) in the presence of Hunig’s base (4.0 equiv, CHsCN, 25 “C, 14 

h). 

Scheme 2. Synthesis of N-benzyl Lactone g. 
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Lactone 9 was a mixture of diastereomers originating from the 8:l mixture for 8. At this 

point, the diastereomers could be separated by HPLC; however, we found this procedure to be 

unnecessary as described below. Addition of triethyl amine (1.5 equiv) and triisopropylsilyl 

triflouromethanesulfonate (TiPS-OTf, 1.1 equiv, CsHs) to the mixture of lactone diastereomers 

resulted in the immediate formation of silyl ketene acetals 10 by 1H NMR analysis (Scheme 3). 

Claisen rearrangement of the major ketene acetal diastereomer, with the vinyl and methyl groups 

in a fransorientation, proceeded at room temperature in 8 h; whereas the minor cisdiastereomer 
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failed to undergo rearrangement under these conditions. TiPS ester 11 was obtained as a 

single diastereomer. Reduction of crude silyl ester 11 (LiAIH4, 5 equiv, ether, 25 ‘C, 2h) afforded 

alcohol 12 in 62% overall yield from 9. One pot Swern oxidationte/Horner-Wittig olefinationl 1 

(1.4 equiv phosphonate; KH, 1.2 equiv, THF, 25 ‘X, 3h) afforded enone 13 in 66% yield from 12 

(95:5 E/Z mixture). 

The completion of the synthesis required hydrogenation of the two alkenes, deprotection 

of the amine, iminium ion formation, and stereoselective reduction. All of these transformations 

were accon?p/ished in a sing/e step! Subjecting 13 to H2 (1 atm) in the presence of 10% Pd/C 

(2O:l MeOH/l N HCI, 5 days) afforded (+)-monomorine [a]F +35.4’ (CHCl3, c = 0.0069) in 66% 

yield.‘2 

Scheme 3. Synthesis of (+)-Monormine 1. 
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The synthesis of (+)-monomorine was accomplished in 9 steps (5.4% overall yield) from 

amino ester 5. The synthesis demonstrates the utility of our Claisen rearrangement strategy for 

the synthesis of enantiopure indolizidine alkaloids from readily available a-amino acids. Work is 

currently ongoing to apply this methodology to the synthesis of more complex indolizidine natural 

products. 
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